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INVESTIGATION OF THE STABILITY OF VERY FLAT SPINS AND
ANALYSIS OF EFFECTS OF APPLYING VARIOUS MOMENTS
UTILIZING THE THREE MOMENT EQUATIONS OF MOTION

By Walter J. Klinar and William D. Grantham
SUMMARY

Based on linearized equations of motion utilizing only the three
moment equations and assuming only flat-spin conditions, it appears that
contemporary designs (with the moment of inertia about the wing axis IY

considerably greater than the moment of inertia about the fuselage axis
IX) having positive values of C, (rolling-moment coefficient due to
P

rolling) or positive values of CzB (rolling-moment coefficlent due to

sideslip) will probably not have a stable spin in the flat-spin region
near an angle of attack of 90°. If the damping in pitch in flat-spin
attitudes is zero, stable flat-spin conditions may not be possible on
an alrplane having the mass primarily distributed along the wings. The
effect of moving ailerons with the spin or the effect of applying a
positive piltching moment producing recovery for contemporary fighter
designs will be greatest for large negative values of CnB (yawing-

moment coefficient due to sideslip). In addition, for a certain critical
value of positive CnB, the rolling moment applied by moving allerons

wlth the spin or the application of a positive pitching moment will have
no effect on reducing the spin rate.

INTRODUCTION

Flat spins of airplanes have become more prevalent than in the past,
along with the trends toward lengthened fuselage forebodies, increased
relative distributlion of mass in the fuselage, and low-span wings.
Research results, in general, have indicated the important effects of
such factors as mass distribution and fuselage-nose cross-sectional
shape on the overall stability of a potential spinning motion 1n deter-
mining the nature of spins achleved for current configurations.



As regards the effect of fuselage-ncse cross-sectional shape, results
of investigations of dynamic models in tke Langley 20-foot free-spinning
tunnel and of static tests in the Langley 300-MPH 7- by 10-foot tunnel
(refs. 1 and 2) have indicated that certain fuselage cross-sectional
shapes can provide propelling moments at flat-spin attitudes which might
make an airplane have an uncontrollable flat spin with a high rotational
rate. Spin-model tests have also shown, however, that, for certain models
of contemporary fighters which had propelling noses, the flat spin was
not a stable condition but that the moticon of the model appeared to be
oscillatorily divergent in roll. This oscillatory roll divergence, when
it occurs, generally causes the spin rate of the model to decrease and
the model either ceases to spin or assumes a steeper spin attitude with
a slower rotational rate. The mass distribution of models for which
this motion has been observed is such that most of the mass is extended

along the fuselage (the moment of inertia about the wing axis IY is

high) and the wings are relatively light (the moment of inertia about
the fuselage axis IX is low). From the results of the aforementioned

spin-model tests, it 1s considered desirable that a given airplane be
unstable in the flat-spin region and that the aerodynamic or mass char-
acteristics should be arranged so that thare is no possibility of a
stable flat spin.

Accordingly, an analytical investigation was undertaken to determine
how a flat-spin condition, on a specific design, would be influenced by
stability characteristics. This problem is analyzed herein by utilizing
only the linearized pitch, roll, and yaw =quations of motion. This
approach seems reasonable inasmuch as modzl force-test data show little
change in the aerodynamic forces for small sideslip angles and for varia-
tions in angle of attack in the flat-spin region. Also, as stated in
reference 3, the recovery motion of the airplane appears to be affected
primarily by the action of the moments rather than of the forces. The
effects of applylng various moments in a flat spin have been examined.

SYMBOLS

The body system of axes 1s used. This system of axes, related
angles, and positive directions of corresponding forces and moments are
illustrated in figure 1. The symbols are defined as follows:

Cl rolling-moment coefficilent,



M
Cm pitching-moment coefficient, s S
LovPsp
2
Ch yawing-moement coefficient, ——gg——
LovPsp
2
Cl’CQJCB’Ch’C5’C6 coefficients of characteristic equation (eq. (A19))
My rolling moment acting about X body axis, ft-1b
My pitching moment acting about Y body axis, ft-1b
Mz yawing moment acting about Z body axis, ft-1b
A difference between two values
t time, sec
S wing area, sq ft
b wing span, ft
P air density, slugs/cu ft
v resultant linear velocity, ft/sec
Q resultant angular velocity, radians/sec
A roots of characteristic equation
M
My = —t ft-lb/radian
& o8
M = __MZ ft-lb/radian
75 " 3 /
M
My = —X ft-1b/radian
B o

My
= 85_ ft-1b-sec/radian



ft-1lb-sec/radian

ft-lb-sec/radian
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ft-1b-sec/radian

ft-1lb-sec/radian
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X,Y,Z longitudinal, lateral, and vertical body axes, respectively

P,q,r components of angular velocity about X, Y, and Z body
axes, respectively, radians/sec

rg value of r before disturbarce, radians/sec

IX’I I, moments of inertia sbout X, Y, and Z body axes,

Y)
respectively, slug-ft2

8 angular displacement of X btody axis from horizontal plane
measured in vertlcal plane, positive when airplane nose
is above horizontal plane, deg or radians

¢ total angular movement of Y body axis from horizontal
plane measured in YZ body plane, positive when clockwise
as viewed from rear of airylane (if X body axis is
vertical, ¢ is measured from a reference position in
horizontal plane), deg or radians

a angle of attack, angle between relative wind V projected
into XZ-plane of symmetry end X body axis, positive when
relative wind comes from below XY body plane, deg or
radians

B angle of sideslip, angle between relative wind V and
projection of relative win¢ on XZ-plane, positive when
relative wind comes from right of plane of symmetry,
deg or radians

¥ horizontal component of total. angular deflection of X body
axis from reference position in horizontal plane, positive
when clockwise as viewed from vertically above airplane,
radians



F(4d) characteristic (or stability) equation

f(a) numerator of equation for motion after various forcing
functions are applied

BCI
CZ ——-—b
P 3P0
2V
C %n
r 7\ rb
o 2
2V
Cp = 2
q
3
2V
BCI
Cl =.—— per radlan
B OB
Cy
Cp, = —— per radian
9 98
oLy
Cph. = — per radian
B op
Kng constant value in A8 forcing-function equation (eq. (5))
Knp constant value in Ar forcing-function equation (eq. (k&))
D =4
at

Subscripts and superscripts:
5 initial
t time
A dot over a symbol represents the derivative with respect to time;

for example, d = %%.



METHODS AND APPROXIMATIONS

Three degrees of freedom were utilized in the present investiga-
"tion. The moment equations of motion were used to correspond with these
degrees of freedom and are presented in app=ndix A as equations (Al)

to (A3). As indicated in these equations, the body axes and principal
axes are assumed to coincide, and the engine gyroscopic moments are
neglected. Also, it was assumed that the airplane was spinning about
its center of gravity in a completely steady spin; that is, p, 4,

and r were zero. For these steady spins, the sideslip angle was
assumed to be zero and in order to achieve =2quilibrium at zero sideslip
a small amount of rolling moment AMy was ipplied to oppose the rolling

moment generated by My p and a small amouit of yawing moment to
%5

oppose Mer‘

The slope of the pitching-moment curve MYe is the same as the

pitching moment plotted against angle of attack. The plot of pitching
moment against 6 would have the form similar to that indicated in
figure 2. 1In addition, the pitching-moment coefficients were nondimen-
sionalized with respect to the wing span b instead of the chord.

The aerodynamic derivatives used were assumed to be constant for
the flat-spin attitudes assumed, and such derivatives as Mxr and MZp

were considered to be small enough to be ne;glected.

Because of the fundamental assumptions made for the flat-spin con-
dition assumed, which would be near an angle of attack of 90°, the fol-
lowing conditions existed:

(a) The rate of descent V remained constant and was the resultant
velocity (determined by equating the drag a% the spin angle of attack
to the weight of the airplane).

(b) The rate of yawing r was equal to the resultant rotational
rate about the spin axis & or V.

(c) The sideslip angle B was the same as the wing-tilt angle about
the body axis

(d) The angle of attack a was equiva.ent to 90° + 8, with o
being the inclination of the longltudinal axis of the airplane above
the horizon. (Thus, for very flat spins, ¢ becomes a small negative

angle.)



With these conditions, and from expressions of Euler's attitude
angles in terms of the angular velocitiles about the body axes (appen-
dix A), expressions for p, q, and r in terms of AB, A8, and Ar
were obtained, with second-order terms being considered small enough
to be neglected, and are presented as equations (A4) to (A6). From
these equations, the equations of motion (egqs. (Al) to (A3)) about the
three body axes are rewritten as equations (Al6) to (Al18). This pro-
cedure is used in order that only three variables describing the motion
remain in the equations of motion, whereas originally there were five.

When equations (Al6) to (A18) are placed in determinant form, the
characteristic equation (eq. (A19)) can be determined and is of the form

C1D° + D + CD° + C,D° + CsD + Cg = O.

The expression for the varilous coefficients of the quintic are contained
in appendix A. The conditions necessary for the roots of equation (A1l9)
to be stable (according to ref. 4) are that the coefficients of the
equation all be positive and that certain functions of the coefficients
known as Routh's discriminant also be positive. Routh's discriminant
for the quintic equation is as follows:

Colz - C1Cy (1)

Cy(CoCs - C1Ch) - Co(CaCs - €10¢) (2)

(CEC5 - Clc6)[ch(0205 - Clch) - 02(0205 - C1C6i] - C6(C203 - Clch>2

(3)

An alternate form of Routh's discriminant is given in reference 5.
In order to investigate some of the factors that might affect the sta-
bility of the flat spin, the stability derivatives were varied in the
stability equations for an airplane representative of current fighter
designs as regards mass and dimensions (table I). Various combinations
of derivatives triled are presented in table II, and the coefficlents of
the quintic equations for these combinations are shown in table III in
terms of C, and C; . Stabllity diagrams in the form of C plotted

B B '

against CZB are given in flgures 3 to 9. By following the usual pro-
cedures in stability-analysis work, the constant term in the characteris-
tic equation (the coefficlent C6) equated to zero is plotted as the

divergence boundary (where one or more of the real roots becomes posi-
tive); also, the limiting condition of the three forms of Routh's



discriminant, shown in equation (5), equateé¢ to zero is plotted as the
oscillatory divergent boundary (real root negative, but a pair of the

complex roots positive for all cases investigated). When the constant
term in the quintic (the coefficient 06) becomes negative, the motion

is divergent; and when the limiting form of Routh's discriminant becomes
negative, the motion has oscillatory 1instability.

The technique utilized in the solution of motions after application
of forcing functions is explained in appendix A.

RESULTS AND DISCUSEION

Stability Diagrams

Cases A and B were computed to show the effect of different rota-
tional rates on the stability boundaries. The rates chosen for cases A
and B are similar to those that could be obtained in flat spins, where

the rate chosen for case A (ro =1.9 radians/sec) would be somewhat slower

than the average spin and the rate chosen fcr case B (ro = 3.1k radians/seq

would be about normal. For these two cases, plotted as figures 3 and 4
respectively, the damping in roll Clp was chosen as a reasonable value

for a swept-wing airplane based on the oscillation tests presented in ref-
erence 6. From previous experience and from oscillation tests presented
in reference 6, the values chosen for Cmq, Cme, and Cnr are considered

to be within the range obtainable, on such a configuration, in the flat-
spin region. Figures 3 and 4 indicate the following for cases A and B:

For the slower spin rate (case A) the airplane has oscillatory insta-
bility for a range of small negative values of CZB and for all positive

values of C; ; also, for all positive values of CZ larger than approxi-
B

mately 0.05, the motion is divergent. For tae faster spin rate (case B),
both instability boundaries are moved farther into the positive ClB

range. In both instances the instability rezions are primarily functions
of C; . This would seem logical inasmuch as IZ is about 10 times as

large as Iy for the airplane considered. (See table I.) Cases A and B

in figures 3 and U4, respectively, show, then, that an increase in the
rotational rate could make an airplane havinz a negative value of CZ

near zero change from a condition for which the flat spin would be



unstable to one in which a stable flat spin would be obtained. This
effect on the spin stability of increasing the rotational rate has also
been observed on dynamic models tested in the langley 20-foot free-
spinning tunnel.

Cases C and D when compared with cases A and B show the effect of
a very small negative value of Cy (-0.01) on the stability boundaries.
D .

For the slower rotational rate (case C, fig. 5), the region of oscillatory
instability includes most of the negative ClB range, whereas the diver-

gence boundary is relatively unaffected by the change in C,_ . Doubling
p

the rotational rate (case D, fig. 6) made motions for given values of
negative ClB stable, whereas they were unstable for case C.

Cases E to G (table III) were investigated to determine what effect
a small positive value of Clp (0.025) might have on the stability of the

spin. The original values assumed for Cmq and Cnr lead to a stability

equation which indicated, by inspection, that the system would be unstable.
(The Co coefficlent in the stability equation (eq. (A21), which contains

the damping terms was negative.) Accordingly, larger negative values for
Cmq and Cnr were assumed. The stabllity plots for cases E to G are

presented as figures 7, 8, and 9, respectively, and indicate that insta-
bility generally exists for the whole region plotted. As noted by com-
paring case E with case F, doubling the spin rate r, and doubling the

damping in yaw C caused an extremely small region of stability to
Ny

occur where originally no stability existed. Flattening the slope of the
pitching-moment curve (decreasing Cme) had little effect on the stability

region obtained for the higher rotational rate. (Compare cases F and G
in figs. 8 and 9, respectively.)

On the basis of the results discussed so far, it appears that, for
an airplane that is loaded predominantly along the fuselage (as in the
present case), a positive value of CIB in the high-angle-of-attack

range will tend to prevent stable flat-spinning conditions. For such a
design, 1t would be expected that the oscillatory instabilities indicated
for cases A to G would be evidenced as roll oscillations since the axis
of the least inertia is the roll axis.

In order to show the effects of mass distribution on the stability
of the flat spin, a case (case H) similar to case B was computed except
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that the moments of inertia sbout the X- and Y-axes were interchanged.
Comparison of cases B and H indicates that, although stability existed
for negative values of CIB when the mass was distributed along the

fuselage (case B), oscillatory instability 1s obtained for the wheole
range of positive and negative values of 313 when the mass was dis-

tributed along the wings. No boundaries are shown in this case (case H)
because they fell outside the chosen range of CZB. This latter condi-

tion is undoubtedly attributable to the fact that damping in pitch Cmq

was zero. It is probably safe to say that the oscillatory instabilities
that exist for case H are pitching oscillations, inasmuch as the axis

of the least inertia is the pitch axis. Epin-model tests have also shown
that for models loaded predominantly along the wings, the motion is char-
acterized by pitching oscillations. One conclusion that may be drawn
from case H is that, for a configuration raving its mass predominantly
along the wings, a value of Cp,. of not less than approximately -0.10,

and very little damping in pitch, stable flat-spin conditions will prob-
ably not be obtainable at the flat-spin attitudes.

Computed Motions Due to Applicatior of a Forcing Function

Although the limiting assumptions in deriving equations (a26), (A27),
and (A28) are such that computation of the motion, after the application
of any given disturbance, applies only for small changes from the initial-
spin equilibrium position, it was felt the¢t the trends indicated would
be in the proper sense; therefore, severa.. computations were made.

Because of the limitations of this method the time scale has been kept
down to 20 seconds.

It appears that the most effective wuy to influence the spin and to
bring about recovery (according to refs. .. and 7) is to obtain a yawing
moment by applylng a moment about an axis which offers the least resist-
ance to a change in angular veloclty (leaist moment of inertia). Accord-
ingly, computed motions were made for app.ied rolling moments only.
These computations were arbitrarily made “or cases A, B, and E and are
presented in appendix B.

The majority of the cases computed anply to case A in table II and
figure 3 Cl = -0.10 and ry = 1.9 radians/sec . The motions computed
p

for the stable case (point 1 in fig. 3) siow that with CnB = 0.10 and
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M
Cy, = =0.15 when the incremental rolling moment ifz- originally

B X
applied to balance CZP was removed, the following occurred: The spin

rate decreased slightly, 6 became slightly more negative (a decreased
slightly), and B was slightly changed. (See fig. 10.) It should be

noted that removal of the incremental rolling moment %ﬁ& in this case
X

is equivalent to applying ailerons slightly against the spin, and it

appeared unusual that ailerons against the spin would slow down the spin

rate or decrease the angle of attack even slightly for the type of mass

loading considered. The motion computed for the stable point 2 in fig-

ure 3 where CnB was taken as -0.10 with CzB still equivalent to -0.15

showed that, for the same type of forcing function used for point 1 (that
is, the equivalent of a small alleron deflection against the spin), the
spin rate now accelerated somewhat, the angle of attack increased
slightly (a6 slightly positive), and the angle of sideslip became
slightly negative. Further, when a rolling-moment coefficient of 0.01,
which was assumed equivalent to moving ailerons full with the spin, was
applied for point 2, the combined effects of Clp and ailerons full

with the spin indicated a slowing of the spin rate

(%% -0.041 radian/sec), a decrease in the angle of attack

(&

dt

(See fig. 11). These effects obtained for point 2 where C, was
B

-0.002 radian/sec), and positive angle of sideslip (B = 2.9°).

equivalent to -0.10 are consistent with the effects that would usually
be anticipated; whereas the effects obtained for point 1 where CnB

was equivalent to 0.10 are inconsistent with the effects that would
usually be anticipated.

These differences can be explained on the basis of physical con-
siderations and also from an examination of equations (Al), (A2),
and (A3). Physically, it would be anticipated that, for the type of
loading considered, the cross-couple inertia yawing moment (IX - IY)pq

would act in a sense that would slow down the rotational rate when
allerons are placed with the spin (refs. 6 and 7) or when a positive
rolling moment is applied. Similarly, a negative rolling moment
(ailerons against the spin) acts in an opposite manner. In addition,
if the spin rate slows down, the angle of attack would be expected to
decrease because the amount of positive pitching moment supplied by
the inertia pitching-moment term (IZ - IX)pr would be decreased.
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Thus, based on inertia considerations alone, it would be anticipated

that a positive rolling moment (ailerons with the spin) would slow down
the spin rate and decrease the angle of attack, with the converse holding
true for a negative rolling moment. On the other hand, when the aero-
dynamic yawing-moment characteristics are considered, it would appear
that, if a spinning airplane had a positive value of CnB, movement of

ailerons with the spin would cause the inner wing to drop (right wing

in a right spin) and permit the airplane to acquire a certain amount of
positive sideslip. This combination of positive sideslip combined with
positive values of CnB would cause the airplane to yaw into the spin,

that is, to increase the rotational rate. This effect, then, is just
opposite to the inertia yawing moment produced by the ailerons. Thus,
as CnB increases from zero in the positive direction, there would

apparently be some value of positive CnB where the aerodynamic and

inertia effects would be nullified; and for further increases in posi-
tive CnB, the effects of the ailerons in producing recovery would be

reversed.

Examination of the stability equation (eq. (A19)) and equations (A26),
(A27), and (A28) for the roll forcing function enables the computation
of this point of reversal for the cases corsidered. These equations
indicate that, for the stable-spin cases ccnsidered, the most important
terms are the coefficients C5 and C6 of the stability equation

(eq. (A19)) and the constant term in the rcll forcing equation. The
coefficients C5 and Cg are, of course, both positive for the stable

cases; and since examination of the roots :ndicates that the only real
root is small, A, the equations for Ar wnd A8 (egs. (A26) and (A2T7),
respectively) for a stable polnt when a positive C; 1s applied can be

simplified roughly to

M
£ M I, -1 Z

I, -1 2 /x Y . 2 Bl At

K | —— r -6 —_l e
KAIKXI Yro2eo_1_£ Ary I, o Yo 2
Ar = Z Z/ . (1)

M
M Iy - T Z

i} k-Iy o Zg\ Kyl - Yy o, - i'_B oAt

r - —

") 1, 0% - T, VA Z

X (5)

"
]
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where %Ar is a negative number, KAG 1s a positive number, and 855

according to the original assumption, is a small negative angle. Thus,
the value of MZB (or Cnﬁ) for which application of a rolling moment

will have no effect on the yawing rate is computed by equating
r2e - —B o (6)

For case A, this value of CnB is 0.055. It is obviously desirable,

then, that for the application of a positive rolling moment (ailerons with
the spin) to have the greatest effect in producing recovery for the type
of loading considered (mass predominantly in the fuselage), CnB should
be a large negative number. (It should be noted that, for a loading in
which the mass is extended primarily along the wings, CnB should be

positive.) It should be pointed out that these values of CnB are

favorable for instability, which 1s good in the spin but is not good for
stability in normal flight. Examination of the roll equations (egqs. (A26),
(A27), and (A28)) indicates that the wing will always roll in such a
manner that the sideslip angle acquired is in the same sense as the
rolling moment (that is, a positive C; 1leads to a positive B). The

value of C Just computed for which the reversal of aileron effect

g
occurs also holds in the oscillatory instability region. It is inter-
esting to note that incremental negative values of CnB due to the

fuselage would, in general, be expected when a fuselage nose is pro-
viding a damping moment in the spin; whereas positive incremental values
of Cn‘3 would probably be present for cases in which the nose is pro-

viding a propelling moment.

Motions for points 3 and 4 in the oscillatory instability and
divergent regions, respectively, for case A (fig. 3) showed that, for
the point in the oscillatory instability region (point 3), Ar would
be exceedingly high before any appreciable instability in B would be
obvious; whereas the point chosen in the divergent region (point 4)
diverged about all three axes almost immediately. (See figs. 12 and 13.)
In order to note any divergence in B for the oscillatory instability
region, CnB should be close to 0.055, the point where application of

a rolling moment would have no effect on the yawing rate r or on the
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angle of attack (90° + 8). Although the roots were not computed for this
case, it is fairly obvious that there would be little change in the roots
provided ClB remained fixed (that is, point 3 increased positively to

CnB = 0.055 1in fig. 3). Then, for a point in the oscillatory instability
region of case A (fig. 3) where CZB =0 e&nd CnB = 0.055, the motion for

the case wherein ailerons are placed full zgainst the spin (CZ acting
p

and CZ = -0.0l) would be approximately as shown in figure 14, As is

shown, this is a very slow divergence but motions of this nature are often
seen in the lLangley 20-foot free-spinning tunnel.

A few computations were made for comperison of the motions for the
various polnts numbered 1 (CZB = -0.15 and CnB = O.l) for cases A, B,

and E and show the effect of increasing the rotational rate and of changing

) from a stabilizing value (-0.10) to a destabilizing one (0.025). The
p

most obvious effect for the increased rotation rate is that the response
to a rolling moment is in the sense anticipated in that a positive rolling
moment decreases the yawing rate. (See fig. 15.) This happens because
the value of CnB for which the effectiveness of the ailerons reverses

is increased positively from 0.055 for the slower rate of rotation to
0.155 for the present rate of rotation. The motion for point 1 of case E
is now unstable (whereas a stable condition existed for case A), and the
motions plotted in figure 16 show that the instability in sideslip is
obvious in a short period of time.

The effect of applying a positive pitching moment is as follows:
The change in yawing rate Ar 1is decreased 1if Mxp is negative unless

M
I, - T 7,
E____I r 28 ——& becomes

CnB becomes sufficlently positive that — I o 99 - I
7, Z

negative, P Dbecomes positive provided M&P is negative, and AB 1is

dependent upon various factors and will be positive or negative depending
upon whether the following expression 1s positive or negative:

r M M, M M M
0 "Zy(Iy - I Z. Xp 2, 2 Noflx - Iy *»

YT TTo% T\ I tio %) (D
I, \ Ik z x X z x Iz

Equations (A32) to (A34) show the application of a pitching moment.



The effect of applying a negative yawing moment is as follows: The
change in yawing rate Ar is usually decreased and a negative yawing
moment has the greatest effect in reducing Ar if MXB and Mxp are

large negative values, B generally becomes negative if MXp 1s nega-

M
X
tive, and A6 Dbecomes more negative (o decreases) unless E—E- becomes

X
y-1; o
large enough positively to exceed — r,o. (See eqs. (A29) to (A31)

for application of a yawing moment.)

Thus, application of a positive pitching moment appears to produce
an effect similar to the application of a positive rolling moment as
regards its effect on reducing the spin rate, and a negative yawing moment
also reduces the spin rate. These effects are consistent with effects
observed from experimental spin research in the langley 20-foot free-
spinning tunnel.

A few calculations have been made on a high-speed digital computer,
utilizing six-degree-of-freedom equations of motion, in an attempt to
check the validity of the results presented in this paper. Although
some limiting assumptions had to be made in carrying out the six-degree-
of -freedom studies, the results are considered to indicate the qualitative
validity of the three-degree-of-freedom results in this paper.

CONCLUSIONS

The following conclusions are based on linearized equations of motion
utilizing only the three moment equations and assuming only flat-spin con-
ditions:

1. Contemporary airplane designs (with the moment of inertia about
the wing axis Iy considerably greater than the moment of inertia about

the fuselage axis IX) having positive values of rolling-moment coeffi-

cient due to rolling or rolling-moment coefficient due to sideslip will
probably not have a stable spin near an angle of attack of 90°. In addi-
tion, high rotational rates have a stabilizing effect on flat spins, an
effect which has been observed during spin-model tests in the Langley
20-foot free-spinning tunnel.

2. If the damping in pitch in flat-spin attitudes is zeroc, it would ’
not be possible to obtain stable flat spins if the moments of inertia of
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the airplane are such that the mass is primarily distributed along the
wings, that 1s, with Iy considerably greater than Iy (opposite to

the mass distribution of contemporary fightsr designs).

3. The effect of moving ailerons with the spin in producing
recovery for contemporary fighter designs will be greatest for large
negative values of yawing-moment coefficient due to sideslip CnB, and

for a certain critical value of positive CnB the rolling moment applied

by moving ailerons with the spin will have ao effect on reducing the spin
rate. These effects also apply to an application of a positive pitching
moment .

Langley Research Center,
National Aeronautics and Space Administration,
langley Field, Va., February 25, 1950.
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APPENDIX A
DERIVATIONS OF EQUATIONS
Equations for Determining Stability Boundary

The equations of motion corresponding to the rolling, pitching, and
yawlng degrees of freedom are, respectively,

Roll = Iyp = (Iy - Iz)ar + MXBB + Mxpp + MMy (A1)

Pitch = Iyq = (I, - Iy)pr + My 6 + Mqu + My (A2)
= r = - T

Yaw = I, (IX _Y)pq + Mzrr + MZBB + oM, (A3)

Expressing the angular velocities about the body axes in terms of
the (Euler's) attitude angles gives

p = d - ¥ sin @ (AL)
Q=06 cos @+ ¥ cos 6 sin ¢ (A5)
r=-6 sin ¢ + ¥ cos 8 cos ¢ (A6)

(See appendix A in ref. 8, for example.) The following assumptions
were applied:

[en]
1]

0o + A8

<
I

ro + Ar

B=¢=8,+28 (B, =0)
sin £ = £
cos L =1
Rewriting equations (A4k), (A5), and (A6) with the aforementioned

assumptions included and with second-order terms neglected gives,
respectively,
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p=0B -1, - T, A8 - 8, Ar (27)
q = A8 + r, OB (A8)
r =1, +Ar (A9)

which can be expressed as

D =0B -1y A8 - B, AT (A10)
G =08 + 1y LP (A11)
T = Ar (A12)
or as
. 2 2
pr = o AB - 2r 8, Ar - 1 TA8 - 148, (A13)
pq = -rgf, A - 1,26, A (A1L)
qr = ro A6 + 1, 7AB (A15)

Substituting equations (A7) to (A1l5) into equations (Al) to (A3)
and neglecting second-order terms gives the three moment equations in
the following form: Roll is given as

M ; M
X I, - L X
Roll = ng[p? - 2D -{ X Zr 24 By
Ix X Ix
I, - I M
08 v |1+ = Z)D+——ro +Ar-eoD+——xpeo
I I
X X X
i .
M
X My
= - Prpg 4+ 2 (A16)
o]
Iy °© Ix



M
where - —Eg r,8, and —X  Ccancel each other for balance at B = 0°

Ix Ix
for the initial steady spin. Pitch is given as

I, - Iy MYq
Piteh = AB(r (1 - D - r +

A8
Ty Ty y /|
Iz - wa.
Ar 2r 85 |
I
Y|
My I - Iy My o
= = -r %6, + 8y + —2= (A17)
My
where == 1is consldered to be equivalent to zero for the initial steady
M
I, -1 Y
spin and -rogeo Z X, l 8o + ¥ZLE cancel each other for balance
Iy Iy Iy

for the steady-spin state. Yaw is given as

Yaw = AB |——— ro6s - — + AO ———————-rOBOD + AriD - o
I, I, . I, ] . _‘
Mg, M,
= —L e (A18)
L z
where E—E r, and i__ cancel each other for balance for the initial
Z 2

steady spin.
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By placing equations (A16), (Al7), and (A18) in determinate form
and solving for the characteristic equation, an equation of the following
form is obtained:

b eep s CAD2 +CD+Cp=0 (A19)

ch5 +CD 5 5

where the coefficients of the characteristic equation are given as

C; =1 (A20)

Co = - - - (A21)

Tt M T T

Cx = - —+ — o+
Iy, Iy Iy Iy I Iy I, Iy I,
Iy - I\ /L, = Iy T, - T\/Iy = I
t ( : Z)( e A (a22)
My My My My My M; My My M; My My My M
cy = 0 o) B r _ Xp ¢ “r + r 6 + q B B, +

M, M M ,

Zg % Mxp 2 MYq L2 _%r_ 2|, Iy - Ig (Iz - I\,

_r S G -
1z Ix Ix Iy z Iy Iy
M
L2p 2 *oflz - W)k - Iy (823)
0% 71, I I
X\ Iy 7
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(A24)

(A25)
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Equations for Solution of Motion after Application of
Various Forcing Fun:tions

In order to solve for the motion afte:r various forcing functions
were applied, the five roots of the characteristic equations were deter-
mined as were the differential equations for the various forcing func-
tions. The solution for any of the motions A8, Ar, or AB 1is then
determined from

N8, Ar, or AP =»Lgil

(a)

-J

where f(d) is the numerator of the equation for the motion after various
forcing functions are applied and F(d) 1s the characteristic equation.
The forcing functions employed were step inputs for which Heaviside's
expansion could be employed to obtain a solution

2o, Ar, or ap ~ 20, }’ xif?%) At

where the various values of A are the five roots of the characteristic
equation and F' indicates the first derivative of the characteristic
equation. In order to solve this equation for the complex roots, the
method explained in reference 9 was employsd. The equations for the
motion after application of various forcing functions and the removal

AMy

of the o term originally inserted intc equation (A16) for balance at
X
zero sideslip are as follows:
M M My M
I, -1, I, -I Z Y “Z
Ar = —ER rofo rozeo X Y2 X _ IAE'De + 9 Bps
Ix Iz Ty z Iy I
M M
I, -1 Y \I, - 1 Z
Z X r2 _ CRIBRS Y r 2 - B 1 (A26)
I °© 1 I °© "% 1 F(a)
Y Y Z Z
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M5, Iz - Ix\. 2 g Moo VL I - Ik
A = —r B Ir, (1 D= + |- —= r's = 1 To 1- D +
Ix Iy Iy z Iy
M - - -
ﬁzgr—EE-r or 38 2 IX IY IZ IX + 2r. 0 MZB IZ IXN 1
- o¥o
Iy I °° z Iy Iy Iy ) F(a)

Application of a rolling moment.- After the application of a rolling
moment the equations for Ar, A8, and AB are the same as those given
in equations (A26), (A27), and (A28), respectively, except that the
M
— ro8y term is replaced by - éﬁz.

X Ix

Application of a yawing moment.- After the application of a yawing
moment the equations for Ar, A8, and AR are given, respectively, as




2L

To (A29)
Iy Iy Iy Ix |F(d)
M M
M I, - I I, -1
Ae=T-Z_eOrO<-1-L_I__X)D2+Iq+IKp+pr ZIX>D+
Z Y Y X X Y
- - M M. |
5 IZ IX I’Y IZ . 5 .\ XB MYq X,p' 1 (A5O)
Iy Iy, ©° Iy Iy IX—JF(d)
M
Y I, - I I, - Iy Iy - 1
ap = “Z o |0 (M—EJrIXpDE»r 2 X P XX 2.2,
z Iy X Y Y X
" MY : MY & I, - I M)r MYQI
XP 9. 6D+§_Z X .2 P 64 1 (A31)




pitching moment, the equations for Ar, A8, and AR
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Application of a pitching moment.- After the application of a
are given, respec-

tively, as
M M
M I, - I I, - I Xq Ty - 1
ar = X (-roeo X _ Y% 4 (ree, 2ol " M), r8, — XY _
I, I, I Iy I,

I, - I M, Iy - I My 10 -1
rle, X Y, . ‘3<1+—Y_._Z)D+ro5e XPXIY
z,

M
ro %EE _EB 1 (A32)

M M - M M, M
"l . (X, Zr\p2 r 2 Iy-Ip X Tz TXp
M M M, M
o 2Ix -1y "7 o Zp Iy -1, Z.7Xg
8o Tg + 0o/D + rg +
I, I, z Ix Iz Ix
M M
°© o Iy I, Iy IZJF(d)
M M
My Iy -I; Iy-Iy o\ o> ¥ply-Iy o X
o Tol 1+ =< — 8,%)0% + — 0y - £ -
Ty X z X z X
M M
A I, -1 My
I, Ix I, Ix ( F(4)
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APPENDIX B

EQUATIONS FOR MOTION OBTAINED WEEN VARIOUS FORCING

FUNCTIONS ARE APPLIED IN ROLL

dase A

In the determination of points 1 to 4 in figure 3> for case A, the
M
E_K term is removed from equation (Al6) wrich then allows MXp to act.
X
Thus, Ar, 08, and AP can be expressed, respectively, as follows:

Point 1 in figure 3.-

-0.0267Tt -0.01718tC

Ar = -0.03903 + 0.03906k4e + 0.000146e 0s(1.696t +

--O.l5Ol+5tC

6.1665) + 0.000051ke os(3.328t + 3.6249)

A6 = -0.00252 + 0.002521e=C-026Tt L 6 000u:=0-O1T18% o5 (1 696t + 3.09) +

-0.15045t

0.0000156e cos(3.328t + 2.904

AR = -0.005k66 + 0.010736e 00207t 0.000528e 0 OX T o (1,696t +

-0.15045t

I .606) + 0.001126e 0s(3.328t + 4.64LT)

Point 2 in figure 3.-

Ar = 0.128656 - 0.128795¢"0-0292t
26 = 0.00946 - 0.00gk7e O-0ZFT
AB = -0.004996 - 0.000271e~0-02925t

It should be noted that the oscillatory terms were not computed for this
case in that they were assumed to be of nezligible importance for the
time range considered.



If CZ = 0.01 1is applied, the result is

Ar = -1.3291 + 1.3305e~0-02925t
A8 = -0.09772 + 0.0978e~0-02925t
AB = 0.051648 + 0.002769e~0-02925t

Point 3 in figure 3.-

Ar

A5

AR

If

0.576L - 0.5878e'0'055t + o.0058e'0‘l7tcos(1.32t + 1.37) +

0.00092e%- 95 05 (2.05¢ + 0.729)

0.0424 - 0.0432e™%-0%% 4 6.00006670 1Tt 05 (1. 308 + 0.99) +
0.0001e%-0185% 05 (2.05¢ + 1.84)

-0.02346 - 0.005e™"00t | 5.009e"0-21Tt0 05 (1 30t 4+ 6.18) +

0.0004e?- 01505 (2.05¢ + 5.28)

CZ = -0.01 1s applied, AR can be written as
-0.2438 - 0.0558e™0:0%0 4 .1120070- 1Tt (1 501 + 6.19) +

0.0027%- 91505 (2.05¢ + 5.14)

Point 4 in figure 3.-

Ar = -0.05515 + 0.0002862° 98 _ o 0o0z2e=3- 13t | 0.05013e =003t

O.OOOOEeO'OO5tcos(2.Oh5t + L.gk)

27
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A8

- -0.00405 + 0.00007e2 1% _ 0.00006¢ 21 + 0.00368e 70 07"
0.000130-0P%cos (2,045t + 1.621)
_ 0.00593 - 0.00309¢2 T8 _ 0.00275¢ 212 + 0.000kke 0" 4

0.00003e0-00 05 (2,043t + 5.554)

If C; = -0.01 is applied, AB can be written as

~0.05651 + 0.002166¢0-020T* +0.0348e 0018 (o (1 696t + 6.19) +

-0.15045t

0.03876e cos(3.3%28t + 6.26)

Case B - Point 1 in Tigure 4

In the determination of point 1 in fizure 4 for case B, the

T
Ix

term is removed from equation (A16) to allow MXP to act. Thus,

fal’)

OB

]

0.0597 - 0.0596e~0-02T3¢ 0.0000274 200363t og (5,133t + 4.u1) +

0.000228¢ "0 2% 05 (3.65t + 1.60)

-0.0273t -C.03%63t

0.003 - 0.002% + 0.00092e cos(3.133t + 1.18) +
0.00078e =022 05 (3.65t + 0.78)
0.0066 + 0.000056e=0-02T3% 1 0. 000ce™0-9303te05(3.133¢ + 2.63) +

0.0055e'0'225tcos(5.65t + 6.07)

If Cy; = 0.01 1is applied, Ar, N9, and AR (with oscillatory

terms being of small importance in determining A9 and final trim B)
are glven, respectively, as



AB

AB

term

AB

~0.3782 + 0.3776e~9-02T3% | 0.001648e

0.001L4k42e

-0.

225tcos(5.65t + 4.73)

-0.016 + 0.016e-0-0273t

0.035 + 0.0003%e

In the determination of point 1 in figure T for case E, the

-0.0273t

-0.0363t

Case E - Point 1 in Figure 7
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cos(3.133t + 1.27) +

P
Ix

is removed from equation (A16) to allow MXP to act. Thus,

0.002707 - 0.002703e~2-992¢ .+ 0.000020%e

0.000092e9 939 05 (3,15t + 1.62)

0.000204% - 0.000208e-0-092t , 0.0001e"

0.0000672-03%% 05 (3.15¢ + 4.71)

0.00131 - 0.000055e

-0.092t

+ 0.00004%e

0.00131e9:939% 05 (3.15t + 3.17)

0.0035t

-0.003

O.OO}tc

Ir ¢, = -0.01 is applied, the result is

-0.111864 + 0.111732e

0.0038e

0.039t

-0.092t | o.0008ke

cos(3.15t + L.76)

-0.003t

Yeos(2.018t + L.T1) +

cos(2.018t + 1.53) +

0s(2.018t + 0.04) +

cos(2.018t + 1.57) +
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Ab

AR

]

-0.008%9 + 0.00856e~°-992% | 0.00472e

0.00276e0- 929t

cos(3.15t + 1.67)
-0.054337 + 0.002268e~0-092t | o 00202¢

0.054256e0-999%¢05(3.15t + 0.01)

-0.003t

co

-0.003t

s(2.018t + 4.67) +

cos(2.018t + 3.18) +
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TABLE I.- MASS AND DIMENSIONAL CHARACTERISTICS OF AIRPIANE

Iy, slug-ft° .
2
Iy, slug-ft

IZ’ slug-ft2

S, sq ft .
b, ft . . . ..

Test altitude, f

10,000

110,000

115,000

385.33
35.7
30,000
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TAELE III.- COEFFICIENTS OF CHARACTERISTIC EQUATION FOR

THE CASES INVESTIGATED (SEE [ABLE II)

Coefficient Cave A Cave B Caze C
Cy 1 1 1
o 0.35 0.35 0.061
0.371Cp, - 93C 6.022 L371C,,. - S3C 15. 506 0.3(1Ch . - 53C, 6. 020
Cs 3 ng 53 gt o 0.37 ng 51B+ 5.5 37 ng 53 LB+uO}
Cy 0.12‘)an - 1.‘48&01[3 + 1.620 O.lEanB - 1‘1481»c13 + 3.813 0.0120,XB - 1“'8‘*015 + 0.308
Cy o.260an - 319.9‘)@5 + 7.91k% o.ecocnB - 5“0.820@5 + 50.3%50 o.eooan - 719.95C1B + 7.501
Cg, -O.}BQCHB - 6.15'((}1B + 0.229 -Ll‘;oCnB - 1-&.8'{;(}15 + 1.468 -0.052Cnﬁ - j.21+','ctB + 0.212
Coefficient Cace D Cnse B Cage ¥
C1 1 1 1
C, 0.061 0.02 0.113
Cs 0.371Cn, - ;5CZB + 22.090 0.57lan - 55CZB - 6.006 0.571Cny - ‘)iczﬁ + 22.075
Cy, 0.012cnB - l.‘+81+C1B +1.112 -o.ozacnB - 5.355C,  + 0.235 -o.ozBCH[3 - 10.282cZB + 2.980
Cy o.eéocnB - 'roz.eiclﬁ + 12.554 0.2650,,[3 - 220'0“C1‘B + T.a4T 0.2650nB - 774-9)*‘018 + 109.313
Cq, -O-l‘)%nﬁ - 20.6701[3 + 0.357 o.o85an - 20.23c13 + 0.689 o.uoacnﬁ - 1&2.50501[3 + 19.310
Coefficient Case G Case H

Cq 1 1

Co 0.113 0.057

c 0.371Cp, - 53C 21.738 0.384C, - 4.818C 21.95"

3 3TACng = 930y, + 21.73 BliCpy - & 1 * LT

Cy -0.028an - 10.2820113 + 2.944 0. )11an - O'lBﬁCzB + 1.113

Cs 0'1520115 - 757.716clB + 102.913 | 4.5 ;9cnﬁ - 59.218(:ZB + 116,368

Cg Cl)’29CnB - 158.99013 + 18.861 0. )280nB - 1.656019 + 3.355




Horizontal

Projection of
relative wind

Projection of Y
relative wind i

Projection OfB

(c) 6 and v = O.

Figure 1.- Body system of axes and related angles.
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Figure 2.- Sketch indicating relative nature of various terms in
pitching-moment equation.
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